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Abstract

The aim of this study is to utilize the behavior of a mathematical model consisting of three-
species with Lotka Volterra functional response with incorporating of fear and hunting cooper-
ation factors with both juvenile and adult predators. The existence of equilibrium points of the
system was discussed the conditions with variables. The behavior of model referred by local
stability in nearness of any an equilibrium point and the conditions for the method of approxi-
mating the solution has been studied locally. We define a suitable Lyapunov function that covers
every element of the nonlinear system and illustrate that it works. The effect of the death fac-
tor was observed in some periods, leading to non-stability. To confirm the theoretical findings,
practical validation was conducted using a numerical simulation implemented in Mathematica
software to prove the validity of what has been proven.
Keywords: hunting cooperation; functional response; fear; Lyapunov function.
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1 Introduction

Mathematical method to study the dynamics of relationships between prey and predator with
existence predators and their young is called age stage-structure prey predator model which pro-
vides an effective basis for capturing the complicated nature of prey-predator dynamic in environ-
ment since it takes into account the life history stages of both prey and predator species, it provides
a more extensive examination of population dynamics in prey-predator models. In addition to re-
quirements continuous models, stage structure models offer a better representation of population
dynamics by separating the population apart into discrete stages, for example adult and juvenile,
and taking into account changes cross these stages.

In general, these models consists of system of differential equations involving variables such
birth rates, growth rates, and death rates to represent the dynamics of every population stage,
moreover, the study of complex ecological phenomena, which include the effects of predators on
prey action, through our study, we observed in Promrak et al. [20] by using the stage structure,
the model provides two stable states, one that includes a single species and the other containing
of several coexistence species. Droz and Pękalski [9] explored the effect of predator mobility
and hunting capability on the system dynamics. Anti-predator was also studied by [19, 10] to
reduced their death and increase their possibility of survival. Ibrahim and Naji [13] discussed
stage structure in food web with three species by using Lotka-Voltera functional response.

Some research has added external food sources as well as a shelter factor [12]. The previous
study offered understanding of the importance of cooperative hunting. We additionally saw an
existence of research on fear and the effect it has on the model, [2] focused on examining the dy-
namic interactions within the ecosystem comprising prey, predators, and scavengers, given the
critical role of scavengers in environmental sustainability and waste management. [7, 11] dis-
cussed growing the prey’s fear rate results in a decline of the predator population, but the system
remains at the coexistence equilibrium point, the location of which varies according to the prey’s
fear rate value. Additional investigators examinedmathematicalmodeling incorporates biological
aspects such as fear of predation, refugees, and harvesting to analyze their impact on the dynamic
behavior of the proposed system [17, 28]. Studying the effect of fear on prey predators and deter-
mining what causes the effect also investigated in many as in [26, 15].

Consuming on species may directly lower their population number. The decrease in the quan-
tity of prey might result in a reduction of supplies of food for predators, which could lead to a
drop in predator populations if prey is the only source of food. The analysis of harvesting in prey
predator model covers several aspects, including the scale and duration of harvesting [6, 24].

In addition, [21] researched the relation among predator hunting with prey antipredator ac-
tion in environment, it tested a stochastic predator-prey model which included fear consequences
and hunting cooperation. Another researcher [8, 22] pointed out the technique for diffusion along
a prey-predator connection which refers to geographical relocation that occurs among population
and the impact it has on population connections. Both [4, 27] discussed diffusion with allee ef-
fect and hunting cooperation without delayed and with delayed respectively. [16] studied the
dynamical behavior of refuge and hunting cooperation on intraguild prey-predator model. One
group of researchers examined the Alee effecting, as referred in [25, 18], while a different group
of researchers analyzed the stability by using fuzzy impulsive control, as discussed in [23].

Other papers have been reviewed that attempt to address the problem of disease presence in
themodel [1, 14]. The objective is to examine the interactions between diseases and prey-predator
models and analyses what this means for ecological and epidemiological research [5, 3].
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The novelty of the research can be summarized as follows: The presence of the factor of fear
in the prey from the predator, because of the impact of cooperative hunting on wildlife in a large
way, leads to the extinction of some animal species, and this is what was observed in the numer-
ical drawings. It negatively affects the food chain and the balance of the ecosystem in general.
Overhunting leads to the extinction of some animal species, affecting biodiversity and reducing
livestock wealth.By examining the model proposed in this study, we gained insight into the effect
of cooperative hunting on prey and how to identify the parameters that affect the system and con-
servation of wildlife. This includes determining hunting seasons and permitted quantities and
maintaining the ecological balance.

2 Hunting Cooperation in Prey-Predator Model

This section examined the mathematical model of the Lotka-Volterra prey-predator system,
made up of one prey speciesX (T ), and Juvenile andAdult predatorY (T ) , Z(T ) at time T respec-
tively. The three-dimensional Lotka-Volterra model represents the logistical expansion of three
species along with the carrying capacity element. One could use the following three first-order
nonlinear differential equations to describe the dynamics of the food web system:

dX
dT

=
rX

1 + sZ

[
1− X

K

]
− (β + αZ)XZ,

dY
dT

= e (β + αZ)XZ − aY − d1Y,

dZ
dT

= aY − d2Z.

(1)

With X (0) ,Y(0), and Z(0) are all positive. In absence of predation, the growth rate of prey in-
creases logistically with carrying capacityK. The description of all parameters which control prey
and population react of (1) are:

r: The rate at which the prey population grows naturally when there is no risk from predators
is known as the intrinsic growth rate of prey.

s: The fear rate of prey is an estimate of how quickly prey notices and responds to the threat
of predators K > 0.

K: Themaximumpopulation size that the ecosystem can support is determined by the carrying
capacity of prey.

β: The attack rate, which defines the rate that predators catch and consume each those killed.
α: The degree of collaboration, which affects how well predators cooperate in order to catch

and hunt prey.
e: The rate that adult prey produces juvenile predators, or the efficiency in which the biomass

of prey undergo a transformed the biomass of juvenile predators.
a: Rate that adult predator become juvenile predators, or the accuracy in which the biomass of

prey undergoes a transformed the biomass of juvenile predators.
d1: Juvenile predator death rate represents the rate at which these predators die out because of

numerous mortality causes.
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d2: The adult predator death rate is the number of adult predators which expire as the conse-
quence of disease, circumstances, and predation.

In order to simplify the analysis process, we continue to non-dimensionless (1) by eliminating
all units from variables by benefit from applying of the next hypotheses;

t = rT , x =
X
K
, y =

β

r
Y, z =

β

r
Z,

w0 = s
r

β
, w1 =

α

β2
r, w2 = e

k

r
β,

w3 =
a

r
, w4 =

d1
r
, w5 =

d2
r
.

(2)

Thus, the non-dimensional system associated with (1) can be expressed in the given format;

dx

dt
=

(
(1− x)

1 + w0z
− z (1 + w1z)

)
x = xf1 (x, y, z) ,

dy

dt
= w2 (1 + w1z)xz − w3y − w4y = f2(x, y, z),

dz

dt
= w3y − w5z = f3 (x, y, z) .

(3)

The functions that given by the vector f = (f1, f2, f3)
T for (x, y, z) ∈ R3 with positive values for

all x (t) , y (t) , z (t) in the right-hand side of the (3) are continuous partial derivative on R3
+. In

addition, the solution of (3) exists and unique. So, they are Lipschitz functions.
Theorem 2.1. Every one of the solutions of system (3) are uniformly bounded which beginning in R3

+.

Proof. Assume that y (t) , x (t), and z (t) any solution of (3), from prey equation we get

dx

dt
≤ x

1 + w0z
(1− x) ≤ x (1− x) .

Subsequently by resolving the previously discussed inequality, It has been established x ≤ 1;
t → ∞. Define the function L (t) = x (t) +

1

w2
y(t) +

1

w2
z(t), the we get the following result;

dL

dt
≤ 2x− x− 1

w2

[
w4y + w5z

]
.

Then,
dL

dt
≤ 2− δ

[
x+

1

w2
y +

1

w2
z

]
≤ 2− δL,

where

δ = min {1, w4, w5}.

By using the Gronwall inequality gives dL

dt
+ δL ≤ 2, then we get L ≤ 2

δ
as t → ∞. Hence, all

solutions of (3) that initiating in R3
+ are uniformly bounded.
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3 Local Stability Analysis

In this section, we can see that (3) has most three non-negative equilibrium points, the exis-
tence conditions of these equilibrium points and stability analyses are carried out. The points have
been marked as follows;

• The points P0 = (0, 0, 0), and Px = (1, 0, 0), which is constantly present.
• The positive equilibrium point Pxyz = (x̃, ỹ, z̃), where

x̃ = 1− z̃(w0z̃ + 1)(w1z̃ + 1),

ỹ =
w5

w3
z̃.

 (4)

As for z̃, it was obtained from five-order polynomial equation,

H1z
5 +H2z

4 +H3z
3 +H4z

2 +H5z = 0,

where

H1 = −w0w
2
1w2,

H2 = −2w0w1w2 − w2
1w2,

H3 = −2w1w2 − w0w2,

H4 = w1w2 − w2,

H5 = w2 − w5 −
w4w5

w3
.

Clearly, the positive equilibrium point Pxyz = (x̃, ỹ, z̃) exists uniquely in the interior of R3
+ under

the following condition,

w2 > w5 +
w4w5

w3
, w1 < 1, (5)

presently, let’s evaluate the stability analysis of all equilibrium points given previously, we used
the Jacobian matrix, which has been stated by J (x, y, z) and then determined the eigenvalues of
them. It is easy to verify that the Jacobian matrix of (3) at the point (x, y, z) can be represented as,

J =

xf1x + f1 xf1y xf1z
f2x f2y f2z
f3x f3y f3z

 , (6)

where

f1x = − 1

1 + w0z
, f1y = 0, f1z = − w0

(1 + w0z)2
(1− x)− (1 + 2w1z) ,

f2x = w2 (1 + w1z) z, f2y = −w3 − w4, f2z = w2 (1 + 2w1z)x,

f3x = 0, f3y = w3, f3z = −w5.

(7)

The Jacobian matrix for the point P0 = (0, 0, 0), can be earned as follow,

J (P0) =

1 0 0
0 −w3 − w4 0
0 w3 −w5

 . (8)
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Then, there are three eigenvalues of J (P0), λ11 = 1 > 0, λ12 = −w3 −w4 < 0, and λ13 = −w5 < 0.
Hence, there is a positive equilibrium point and the other two equilibrium points are negative, so
that P0 is saddle point.

Consequently, for the one-species equilibrium point Px = (1, 0, 0), the Jacobian matrix can be
obtained as the following,

J (Px) =

−1 0 −1
0 −w3 − w4 w2

0 w3 −w5

 . (9)

As a result, we can write the characteristic equation of J (Px) as follows,[
− λ21 − 1

][
λ2 − Txλ+Dx

]
= 0, (10)

where

Tx = −(w3 + w4 + w5) < 0.

Dx = (w3 + w4)w5 − w2w3.

Hence, there are three eigenvalues of

J (Px) , λ21 = −1 < 0, λ22 =
Tx

2
− 1

2

√
Tx

2 − 4Dx,

and

λ23 =
Tx

2
+

1

2

√
Tx

2 − 4Dx.

Clearly, if and only if the following conditions hold, then Px is a locally asymptotical stable point,(
w3 + w4

)
w5 > w2w3. (11)

Theorem 3.1. Suppose that the positive equilibrium point Pxyz = (x̃, ỹ, z̃) of the system (3) exists, then
Pxyz is locally asymptotically stable if and only if the following conditions hold;[

l22l33 − l23l32
]
> 0, (12)

2l11l22l33 < l21l13l32. (13)

Proof. For the positive equilibrium point Pxyz = (x̃, ỹ, z̃), the Jacobian matrix can be obtained as
the following,

J (Pxyz) = [lij ]3×3 ,

where

l11 = − x̃

1 + w0z̃
, l12 = 0, l13 = −x̃

(
w0

(1 + w0z̃)2
(1− x̃) + (1 + 2w1z̃)

)
,

l21 = w2 (1 + w1z̃) z̃, l22 = − (w3 + w4) , l23 = w2 (1 + 2w1z̃) x̃,

l31 = 0, l32 = w3, l33 = −w5.

In this case, the characteristic equation is as follows,

λ3 + L1λ
2 + L2λ+ L3 = 0, (14)
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where
L1 = −

[
l11 + l22 + l33

]
,

L2 = l11l22 + l11l33 + l22l33 − l23l32,

L3 = −
[
l11l22l33 + l21l13l32 − l11l23l32

]
.

While,
∆ = L1L2 − L3,

= −(l11l22)(l11 + l22)− (l11l33)(l11 + l33)− (l22l33)(l22 + l33)

− 2l11l22l33 + (l23l32)(l22 + l33) + l21l13l32.

The Routh-Hurtwitz criterion states that , all roots of the characteristic (14) contain negative real
parts, then under the satisfied conditions (12), (13), the positive equilibriumpoint,Pxyz = (x̃, ỹ, z̃)
is locally asymptotically stable if and only if L1 > 0, L3 > 0 and∆ > 0.

4 The Analysis of Global Stability

This section describes each equilibrium point of a (3) the basin of attraction that belong to the
int R+

3 is investigated by choosing the suitable the Lyapunov function, as shown in the following
theorems.
Theorem 4.1. In the presence of sufficient condition,

w5

w2
> (1 + w1zmax) > 1 + w1z, (15)

in int R+
3 , if the point Px is locally asymptotically stable, then Px is also globally asymptotically stable

within int R+
3 .

Proof. Let us define the following Lyapunove function, η1 =
(
x− x̄− x̄ ln

x

x̄

)
+

y

w2
+

z

w2
, with

x̄ = 1. Obviously, η1 : R+
3 → R is a continuously differentiable positive define real-valued function

that is η1 (Px) = 0, while η1(x, y, z) positive defined for ∀ (x, y, z) ̸= Px, (x, y, z) ∈ R+
3 , y ≥ 0,

x > 0, z ≥ 0, then differentiating η1 with respect to the time t, then we get,
dη1
dt

=

(
x− x̄

x

)
dx

dt
+

1

w2

dy

dt
+

1

w2

dz

dt
,

= − (x− 1)2

1 + w0z
+ (1 + w1z) z −

w4

w2
y − w5

w2
z

≤ − (x− 1)2

1 + w0z
− w4

w2
y −

[
w5

w2
− (1 + w1z)

]
z.

Therefore, the sufficient condition (15) guarantee that dη1
dt

is less than zero. Hence, the point Px

is a globally asymptotically stable.
Theorem 4.2. In the presence of sufficient conditions,

(γ4)
2 < γ1γ2, (16)

(γ5)
2 < γ1γ3, (17)

(γ6)
2 < γ2γ3, (18)

in int R+
3 , ifPxyz is locally asymptotically stable, then Pxyz is also globally asymptotically stable.
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Proof. Let us define the following Lyapunove function,

η2 =
(
−¯̄x+ x− ¯̄x ln

x
¯̄x

)
+

(y − ¯̄y)2

2
+

(z − ¯̄z)2

2
.

Obviously, η2 : R+
3 → R is a continuously differentiable positive define real-valued function that

is η2 (Pxyz) = 0, while η2(x, y, z) is positive defined for ∀ (x, y, z) ̸= Pxyz , (x, y, z) ∈ R+
3 .

Given y ≥ 0, x > 0, z ≥ 0, then differentiating η2 with respect to the time t, then we get,
dη2
dt

=

(
x− ¯̄x

x

)
dx

dt
+ (y − ¯̄y)

dy

dt
+ (z − ¯̄z)

dz

dt
,

= − (x− ¯̄x)2

1 + w0z
+
[
w2z (1 + w1z)

]
(y − ¯̄y) (x− ¯̄x)− (w3 + w4)(y − ¯̄y)2

−
[

w0 (1− ¯̄x)

(1 + w0z) (1 + w0 ¯̄z)
+
(
1 + w1 (z + ¯̄z)

)]
(z − ¯̄z) (x− ¯̄x)− w5(z − ¯̄z)2

+
[
w2 ¯̄x

(
w1 (z + ¯̄z) + 1

)
+ w3

]
(z − ¯̄z) (y − ¯̄y) .

Then, by using the giving conditions, we have that,
dη2
dt

= −1

2

[√
γ1 (x− ¯̄x)−√

γ2 (y − ¯̄y)
]2

− 1

2

[√
γ1 (x− ¯̄x) +

√
γ3 (z − ¯̄z)

]2
− 1

2

[√
γ2 (y − ¯̄y)−√

γ3 (z − ¯̄z)
]2
.

Therefore, the sufficient conditions (16), (17) and (18) guarantees that, dη2
dt

is less than zero.
Hence, the positive equilibrium point, Pxyz = (x̃, ỹ, z̃) is a globally asymptotically stable.

5 Numerical Analysis

The numerical evaluation is a mathematical method performed in order to understand and
evaluate the dynamics of prey-predator systems. It includes the application ofmathematical mod-
els and algorithms to figure out and evaluate problems found in these systems. The key goal of
scientific research in predator-prey systems is to gain an understanding the dynamics of the sys-
tem, including its functioning and evolution, as well as the potential impacts of human activities
on it. Numerical analysis is an efficient instrument in this field as it allows scientists to simulate
and analyze large and complex data sets, and to make accurate assumptions about the behavior
of the system. Therefore, we will study our system and apply the data that was estimated and
selected as appropriate as possible to obtain the approach points and the selected data are shown
in the Table 1.

Table 1: Data of parameter values.

w0 w1 w2 w3 w4 w5

0.7 0.7 0.6 0.3 0.3 0.2

Table 1 contains six parameters, which were replaced in (3), we obtained a global asymptotical
stable point (0.549, 0.204, 0.306). In Figure 1, drawing for the prey, juvenile and adult predator
from initial point (0.5, 0.9, 0.7) in (a) three-dimension phase portrait and time series in (b).
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Figure 1: (a) 3D -Phase portrait of the (3) (b) The time series of the (3) by utilizing Table 1, the trajectories of three species demonstrate
an asymptotic positive convergence towards Pxyz = (0.549, 0.204, 0.306).

In Figure 2, we chose five initial points. It was found that the approximate solution reached
stability three times: once for the prey (a), once for the juvenile (b), and once for the adult (c). In
(d), the whole population is collected together into a time series, and in (e), it is represented in
three-dimension phase portrait.
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Figure 2: (a) The prey population starting from different initial points. (b) The juvenile predator population starting from different
initial points. (c) The adult predator starting from different initial points. (d) The time series exhibits the trajectories of the 3, for
population from five different initial start. (e) 3D-Phase portrait of the (3), for five distinct beginning , the convergence is towards
Pxyz = (0.549, 0.204, 0.306).

The parameters w0, w1, have a quantitative impact on the (3), consequently, we will only ex-
amine the parameters that influence the system. The parameter w2 approaches a positive point
within the interval (0.387, 1), while within interval (0, 0.387] it approaches to Px, as represented
in Figure 3.
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Figure 3: (a) Trajectories of system approach asymptotically to Pxyz . (b) Time series of the (3) converge asymptotically to Pxyz =
(0.347, 0.266 , 0.399) for w2 = 0.9. (c) Trajectories of system converge asymptotically to Px. (d) Time series of the (3), converge
asymptotically to Px = (1, 0, 0) for w2 = 0.3.

When plotting the outcome of changing the w3, three cases appear during certain periods.
The first case is approaching the point Pxyz during the period 0.141 < w3 < 1, the second case is
approaching Px during the period 0 < w3 ≤ 0.141, as represented in Figure 4.
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Figure 4: (a) Trajectories of system approach asymptotically to Pxyz . (b) Time series of the (3) converge asymptotically to Pxyz =
(0.347, 0.089, 0.399) forw3 = 0.9. (c) Trajectories of system converge asymptotically to Px. (d) Time series of the (3), converge asymp-
totically to Px = (1, 0, 0) for w3 = 0.1.

When plotting the outcome of changing thew4, three cases appear during certain periods. The
first case is approaching the point Pxyz during the period 0.01 < w4 < 0.626, the second case is
approaching Px during the period 0.626 ≤ w4 < 1, as represented in Figure 5.
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Figure 5: (a) Trajectories of system approach asymptotically to Pxyz . (b) Time series of the (3) converge asymptotically to Pxyz =
(0.801, 0.107, 0.161) for w4 = 0.502. (c) Trajectories of system converge asymptotically to Px. (d) Time series of the (3), converge
asymptotically to Px = (1, 0, 0) for w4 = 0.64.

When plotting the outcome of changing thew5, three cases appear during certain periods. The
first case is approaching the point Pxyz during the period 0.03 ≤ w5 < 0.307, the second case is
approaching Px during the period 0.307 ≤ w5 < 1, as represented in Figure 6.
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Figure 6: (a) Trajectories of system approach asymptotically to Pxyz . (b)Time series of the (3) converge asymptotically to
Pxyz = (0.074, 0.05, 0.505) forw5 = 0.03. (c) Trajectories of system converge asymptotically toPx. (d) Time series of the (3), converge
asymptotically to Px = (1, 0 , 0) for w5 = 0.5.

6 Conclusions

This study examined the roles of fear in relationships with prey and predators. The sense
of fear can have an important effect on the action of creatures of prey, changing their habits of
seeking out food, their motions, and the selection of territory. Further, fear may affect the be-
havior of predators, causing alterations in hunting methods and prey choice. So, we investigated
the purpose of hunting cooperation in predator-prey relationships and the consequences of fear
into mathematical models. These models offer helpful understandings into the dynamics of prey-
predator systems and have improved our awareness of the effects of fear and hunting cooperation
on population dynamics, ecological stability, and all variety.

Simulationwas used to study amathematicalmodel to understand the behavior of the dynamic
system. Through drawings, it was possible to approximate the behavior of dynamic systems and
predict their future behavior.
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